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Abstract. The mean square displacement of a tagged particle in a liquid is known to exhibit 
a diffusive linear time dependence beyond a microscopic timescale. By making use of simple 
mode-coupling concepts we derive a set of analytic self-consistent equations for the relevant 
dynamical quantities in this regime, namely the diffusion coefficient and the intercept. 
The results of the theory are successfully compared with the data obtained by simulation 
experiments in different systems. 

1. Introduction 

In the last decade considerable progress has been made towards a better understanding 
of the physical mechanisms behind the dynamics of simple liquids [l]. An important 
step has been the recognition that time-dependent correlations in a dense system are 
controlled by two kinds of dynamical processes in their associated memory functions. 
The first one is due largely to uncorrelated, short-range interactions, which in a hard 
sphere fluid can be essentially identified with binary encounters. In all cases these events 
induce a fast decay mechanism, which even in a system with continuous potential we 
shall simply refer to as due to ‘binary’ collisions. In contrast, the second process stems 
from non-linear couplings of the variable of interest with collective and slowly varying 
dynamical ‘modes’. A rigorous treatment of both effects requires a combined use of 
concepts from kinetic and mode-coupling theories [2]. In the latter framework equi- 
librium properties are assumed to be known; even so, the final output of the general 
theory for the dynamics is a set of non-linear integro-differential equations which make 
even a numerical solution quite difficult to obtain. 

In some cases, however, a much simpler treatment appears possible by introducing 
physical approximations which still retain the essential features of the processes and lead 
to rather good quantitative predictions. One example is a simplified mode-coupling 
theory of the glass transition [3]. More recently, the anomalous increase of the de Gennes 
slowing down of the density autocorrelation in a supercooled liquid has also been 
interpreted along similar lines [4]. The simplicity of these approaches and the reliability 
of their results stimulate the need for such investigations of other basic quantities in 
liquid state dynamics. Here, we show that the most important features of single-particle 
motion in a monatomic liquid can indeed be predicted by a rather simple approach in 
which, nevertheless, phenomenological arguments are kept to a minimum. 
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The format of the paper is as follows. The next section introduces the mean square 
displacement of a particle in a liquid and through its linear asymptotic behaviour, formal 
expressions for the slope (i.e. the diffusion coefficient) and the intercept. These are 
given in terms of a memory function whose components are analysed separately, and 
lead to equations which are solved self-consistently in section 3. Specific results are 
obtained for liquid rubidium and argon. 

2. General framework 

Let us consider the mean square displacement dr2(t) = ( [ r l ( t )  - r l (0)]2)  of a tagged 
particle in the liquid. This can be expressed in terms of the normalised velocity auto- 
correlation function q(t)  = (~~(0) * u l ( t ) ) / (u? )  by 

6r2(t)  = ( 6 k ~ T / m )  j ' d t  ( t  - 2)(p(2).  
0 

Beyond a microscopic time, to (typically, -1 ps in simple liquids), ( 1 )  leads to the linear 
diffusive behaviour d?(t) = 6Dt + I ,  where D is the diffusion coefficient and I the 
intercept of the straight line extrapolated at t = 0. The validity of the diffusive law follows 
from the rapid decay of q(t) fort  < to; in principle, q( t )  is also predicted to have a slower 
long time tail ( K  t -3 /2) ,  but its amplitude in the liquid range is very small and its effect 
can safely be neglected. In such a case the Laplace transform @ ( z )  = Jt d t  e-zr q(t) is 
analytic near z = 0, and 

I =  - ( 6 k ~ T / m )  d t  t ( p ( T ) .  (2) jax D = ( k ~  T/m)@(Z = 0) 

Introducing the memory function, K ( t ) ,  associated with q(t) and defined by @ ( z )  = 
[z  + Z?(Z)]- ' ,  (2) can be written as 

The memory function is the central quantity in the following analysis. Using many- 
body techniques we may formally express K(t )  in the form [5]  

(t> = KB ( t )  + K M C  ( t )  (4) 
where the fast contribution KB( t )  is associated with 'binary' collisions, whereas the 
'mode-coupling' part KMc(t) is represented in terms of slowly varying collective vari- 
ables. 

2.1. The binary component 

At very short times K(t )  = KB(t);  in particular, K(0)  = KB(0) = Qi, where the Einstein 
frequency Qo defined by 

Q$ = (n/3m) J d r V 2 q ( r )  g(r) (5  1 

is expressed in terms of the interatomic potential, q ( r ) ,  and of the radial distribution 
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function, g ( r ) ,  for a liquid with number density n. Moreover, both K ( t )  and KB(t) have 
the same initial decay time 

S B  = [ 1 K ( 0 )  1/2K(O)]-"' (6) 
where E(0)  can straightforwardly be written as (r" = x, y ,  2 )  

(7 )  
Even if in principle the presence of the triplet distribution g(3)(r, r') in the second term 
on the RHS appears to complicate the evaluation of tB,  in practice the square bracketed 
factor in this term greatly decreases its relevance with respect to the pair contribution 
with a single g ( r ) .  This expectation is supported by numerical calculations: for example, 
in ordinary liquid rubidium at 318 K (where the effective potential found by Price et a1 
[6] provides a good description of structural properties). we find that the first term on 
the RHS of ( 7 )  eventually leads to tB = 0.194 ps, to be compared with the full value tB = 
0.217 ps obtained in [ 5 ]  by a superposition approximation for g(3). In liquid Rb, this 
decay time is found to be virtually unchanged even in the supercooled region [7] .  On the 
other hand, in Lennard-Jones liquid 'argon' tg is found to be 0.122 ps [ 5 ] .  Decay times 
of this order are much shorter than the diffusive timescales, which typically comprise 
several picoseconds. We therefore assume that KB( t )  = Q g f ( t / t B ) ,  where the scaling 
function f(x) is an even and rapidly decaying quantity, such that f(x- 0) = 1 - x2. 
Appropriate choices are f(x) = exp( - x 2 )  orf(x) = sech2 x and lead to results for DB = 
( k B T / m )  (so" d t  K B ( t ) )  which have only slightly different numericalfactors. Here, we 
usef(x) = sech' x which gives 

DB = k B T / m Q i t B .  (8) 
There is an alternative derivation of the decay time zB, which for two reasons can 

usefully be considered. The first is that the application of the superposition approxi- 
mation is avoided completely, and the second that the nature of the short-range inter- 
action, thought to be responsible for the rapid decay of KB(t), is emphasised. It proceeds 
by identifying DB with the Enskog binary collision expression for the diffusion coef- 
ficient, given by 

D E  = (3/8)(kB T/jcm) "2(nu&Sg(uHS))-1 ( 9 )  

being the contact value of g ( r )  and uHS the sphere diameter. A value for D E  is 
obtained here by treating the liquid as a rigid sphere fluid with an appropriately defined 
sphere diameter. There is clearly some ambiguity in the choice for the latter, denoted 
by uHS(T) to emphasise its expected temperature dependence. A realistic choice can be 
made on the basis of the penetration depth achieved by an atom with the average thermal 
energy $'kBT. For values of r smaller than that of the principal minimum in cp(r),  the 
potential is repulsive. If E is the depth of the minimum, we select a value for uHs( T )  
through the condition 

q ( r  = a ~ s ( T ) )  + & = f k g  T. (10) 

The contact value, g(aHs(T)), is then obtained from the rigid sphere radial distribution 
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Table 1 .  Theoretical diffusion coefficients D (units lo-' cm' s..') and intercepts j = I / 0 2  

compared with the corresponding data found by computer simulations (CS) in three model 
systems?: Rb 318(ordinaryIiquidrubidium,nnl = 0.905. T =  318 K;cs[9]). Rb 270(super- 
cooledliquidrubidium,na" = 0,905. T = 270 K;cs[9]) andAr(Lennard-Jonesliquidargon, 
ncr3=0.844,  T = 8 6 . 5 K : c s [ 8 ] ) .  

Rb 318 Rb 270 Ar 

Du 3.84 3.26 2.47 
D 2.46 1.57 1 .50 
D (cs) 2.41 1.49 1.75 

[B 0,003 0.002 -0.007 
I 0.045 0.056 0.042 
i (cs) 0.047 0.045 0.031 

+ From the cs  structural data one deduces the following 
values of the parameters: Q:, (ps-'j = 36.92.36.55,59.29: 

0.355, 0.168 and y / Q l !  = 0.064. 0.046. 0.048 where the 
entries refer to R b  318, Rb 270 and Ar. respectively. In all 
cases. 9",0 = 6.8 .  Letting t,, = 27r/Q,,, the quantities i(i,,) 
and , U ( [ [ , )  defined in the text turn out to be A ( / [ , j  = 62. 87, 
66; U ( t [ J  = 1600. 2610, 1666. 

r = m .  273. 385: A O =  1.74. 2.5.  1.5; ~ / ~ ; ! = 0 . 2 8 9 .  

function, a t  a packing fraction n = (n/6)na3Hs(T). For liquid rubidium at 318 K we find 
uHS(T) -- 4.35 A, DB = 3.86 X lo-' cm' sC1 and hence t g  = 0.216 ps (using (8) and a 
value for the Einstein frequency given in table 1). In the supercooled region oHS(T) -- 
4.405 A, DB = 3.19 x lo-' cm's-l and rB = 0.222 ps. These relaxation times are in 
excellent agreement with the predictions based on the initial decay of the memory 
function.Thisisalsothecasein1iquidargon.For T = 86.5 K a n d n  = 0.0214 x lOZ4cm-', 
the results are o H S ( T )  = 3.39 A, DB = 2.63 x 10-' cm2 s - I  and rB = 0.115 ps. 

Whichever the way to  estimate r ,  and DB, the basic physical conclusion is that the 
purely binary model ( K ( t )  = K B ( t )  at all times) is unable to account for the values of the 
diffusion coefficient and of the intercept actually observed in liquids. More precisely. 
the binary predictions 

DB = k g T / m R f , r B  I ,  = b ( m D ; / k , T ) ( Q ; t $  In 2 - 1) (11) 
are found to be in severe disagreement with the simulation data for typical simple liquids 
near the triple point (see table 1 where the values refer to rB evaluated according to 
( 6 )  and (7)). Note that for the supercooled system the discrepancies are even more 
pronounced. 

2.2. The mode-coupling component 

The important consequence of the previous results is that the presence of a slowly 
varying part in K ( t )  is essential, as indeed was found several years ago on a purely 
phenomenological basis [8]. The  actual form of these long-lasting features can be 
established by the mode-coupling theory. A complete account is quite involved and 
would be inappropriate here. The  details are given, for example, in [ 5 ] .  In principle, 
several modes should be included in the analysis (density and current density fluc- 
tuations, etc). However, in the liquid range the slowness of structural relaxation makes 
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the density fluctuations (self or collective) the most important decay channel. Their 
contribution to the decay of K ( t )  can be written as [ 5 ] :  

K M C ( t )  = (nkBT/24n3m) j d4q'c2(q)(Fs(q3 t ,  - FO(q, r ) ) F ( q t  t ) .  (12) 

Here c(q)  is the direct correlation function, F ( q ,  t )  the intermediate scattering function, 
F,(q, t )  its self part and Fo(q ,  t )  = exp( -kBTq2t2/2m) the free particle limit common to 
both F and F,. Note that Kvc(t .+ 0) r4 ,  thereby confirming that the initial time decay 
of K ( t )  is dominated by the purely 'binary' contribution. 

Mode-coupling methods were developed to treat long-lasting decay processes. 
Therefore, in the wavevector integral above, particular relevance should be given to the 
most slowly varying density modes, thereby permitting a further simplification of the 
analysis. In the liquid range the effect of the q .+ 0 hydrodynamic wavevectors is neg- 
ligible (even for long times, where they yield a higher-order 'tail'). The dominant 
contribution is provided instead by the slow de Gennes modes F(q  = qmr r ) ,  where qm is 
the position of the main peak of the structure factor S ( q ) .  Thus, we argue that (12) can 
be approximated as 

K M C ( t )  ~ c ( F s ( q m , t )  - Fo(qm,t>)F(qm,t>/S(qm) (13) 

where c = Ak,Tq$/6nmn2, A = J ( 4 m )  dq  h(q) being the area under the main peak of 
h(q)  = S(q)  - 1. Formally, the result (13) is obtained by making use of the identity 
nc2(q)F(q, r )  = h(q)c(q)F(q,  t ) / S ( q )  along with the simplification h(q )  = AS(q  - qm)  
(which implies nc(qm)  = 1) to emphasise the dominance of the contribution around 
the principal peak as far as the dynamics is concerned [ 3 ] .  Equation (13) has been 
demonstrated to be in quantitative agreement with previous computer simulation (cs) 
data for liquid rubidium [9]. 

It is worthwhile to stress at this stage that the magnitude of KMc(t)/R$ in different 
liquids depends ultimately on the factor 

c/Q 6 = [ ( q m  o)'A a/6n2no']( l/r) (14) 
where a i s  the usual length associated with the pair potential and r = mS2i02/k, T. For 
example, in liquid argon this magnitude is predicted to be distinctly smaller than in liquid 
rubidium: indeed, whereas the square-bracketed factor in (14) is about the same, I' is 
nearly doubled in argon because of the larger value of C2; (in turn, due to the steeper 
repulsive potential in this system). 

To be consistent, the intermediate scattering function F(q,. t )  in (13) should be 
evaluated by considering in its memory function both fast and slow contributions. This 
procedure has successfully been applied [3,4] to situations of marked slowing down of 
F.  including the possibility of structural arrest. If, however, we limit ourselves to ordinary 
and moderately supercooled liquids, fairly good results for F ( q m ,  t )  are obtained by 
neglecting mode-coupling effects [lo]. A typical example of such a theory is the well 
known viscoelastic model [ll]. For q = qm the result can approximately be written as: 

~ ( q  m > t> = ~ ( q m )  exp[- (251' (qm > / d ; ! \ ( Q t ( q m  1 - Q' (4m)) -"'tI 

= S ( q m )  exp(-?4 (15) 

Here Q'(q,,,) = kBTqm/mS(qm),  and Q?(q,) is defined in terms of the fourth frequency 
moment of the dynamic structure factor [ 111, The use of the above expression for F(q,, t )  
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Figure 1 .  ( a )  Normalised intermediate scattering function for liquid Rb at 318 K and 4"7 = 
6.75. The full curve is the result from (15) and the dots are our simulation data. ( b )  Self- 
intermediate scattering function for liquid Rb at 318 K and 4",u = 6.75. The full curve is the 
Gaussian approximation (16), the dots are our simulation data. 

has a clear perturbative character in the present context. Moreover, the discrepancies 
of (15) are found to occur at rather long times [4,9],  where KMC(t)  is very small. 

The last step is the specification of F,(q,, t )  in (13). We have adopted the Gaussian 
approximation 

F,(q,,t) = exp( - i q l d r ' ( t ) ) .  (16) 
Non-Gaussian corrections are indeed small for ordinary liquids; their relevance increases 
only for strongly quenched systems [12]. Thus, both (15) and (16) have approximately 
the same range of applicability. comprising ordinary and moderately supercooled 
liquids. The validity of the approximations behind (15) and (16) is demonstrated i r ,  
figure 1. 

3. Results and discussion 

The presence of dr2( t )  in (16) paves the way for a self-consistent evaluation of the 
quantities D and 1. To demonstrate this. we write (3) in a form in which the non-binary 
contributions are made explicit: 

- 1  

DS1 + (m/k,T)  d z  Kkfc(r))  (17fl) 

I =  ZB + [ ( D / D B ) ~  - I]ZB i- 6(m/kBT)D2  (17b) 
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As already remarked, beyond the microscopic time to (typically =1  ps), 8r2( t )  can be 
approximated as 6Dt + I .  As a consequence, the integrals involving KMc(t) are evalu- 
ated analytically for z > to. This time has been taken as to = 2n/Qo, a choice consistent 
with the physical meaning of the Einstein frequency. In this time range, F,(q,, t) is 
nearly negligible, and introducing the dimensionless quantities D = D/a2Qo,  f = Z/a2 
we obtain: 

d-' =D;' +-A(t,)+ (rc/Qi) e ~ p { - [ ( q , a ) ~ f / 6 + B ( d ) Q ~ ~ t ~ ] ) / B ( d )  

f = D 2 { ( f , / D i )  + p(t,-,) + 6[&' - 0,' -A(to)][Q,t ,  + B(D) - ' ] } .  
(18a) 

(18b) 

Here B ( D )  = ( ~ , , , o ) ~ D  + (y /Q,) ;  moreover, 

-A(t,) = ( W O )  j ' "d .  K M C ( t )  p ( t o )  = 6 r l u i 0 d r  t K M c ( t )  (19) 

are the mode-coupling contributions coming from the time interval (0, t o ) ,  where the 
mean square displacement has not yet reached the diffusive regime. Although for an 
accurate evaluation of D and Z the quantities (19) cannot be neglected, the dominant 
correction to the binary results is provided by the diffusive t > to contributions. Thus, 
even a relatively rough evaluation of h(to) and p( to )  is sufficient. For example, for 
0 < t < to one may choose the simple empirical form K V c ( t )  = b t ,  with the constant, 
b, determined so that bt, coincides with the actual memory function (13) at t = to = 2n/ 
Qo. A more precise evaluation of the quantities (19) has also been made by carrying out 
the integrals numerically. To do this, cs data were used in F, for 8r2(t). These data are 
available for ordinary and supercooled liquid rubidium [9] and for Lennard-Jones liquid 
'argon' [8] .  The results reported in table 1 refer to this more accurate evaluation. 
However, nearly the same results are obtained by the 'empirical' method which, e.g. ,  
predicts D = 2.503 X 

Since all the other non-binary parameters appearing in (18) are deducible from 
purely structural data, we finish with a set of self-consistent equations to be solved for 
the unknown quantities D and I .  The values eventually found for D and I are reported 
in table 1 for the three systems already mentioned, along with the corresponding 'exact' 
cs data. In all cases the predictions for both D and I are a marked improvement with 
respect to the binary values, and the overall comparison with the cs findings appears to 
be quite satisfactory, especially for the supercooled Rb state where the binary results 
were particularly poor. 

An alternative to the procedure of splitting the time integrals in (17) into two regions, 
defined by the introduction of to ,  is discussed in the appendix. This makes use of an 
expression for the mean square displacement, derived from (1) with a simple model for 
p(t). The latter is derived from an exponential memory function (see [1], p 212), which 
at least qualitatively describes the features of the velocity autocorrelation function 
observed in cs data of dense liquids. Even by this alternative procedure, the results 
obtained for the diffusion coefficient and the intercept are found to be in quite good 
agreement with the cs findings. 

In conclusion, our aim has been to develop a reliable means of calculating the self- 
diffusion coefficient in a simple liquid, given some limited information about the static 
structural properties. The relative simplicity of our results is due to the relevance of the 
mode-coupling decay channel associated with 'microscopic' density fluctuations with 
q = qm. In this sense, the theory extends to the 'self' case the validity oi the previous 
works [ 3 , 4 ]  dealing with collective motion. There are, however, some exceptions, in 

o 

cm2 s-' and I/u2 = 0.044 for ordinary liquid Rb at 318 K. 
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which the complexity of the mode-coupling integrals cannot be bypassed in the way 
suggested here. A simple example is provided by the stress autocorrelation function, in 
which the coupling vertex involves the derivative of c(q)  [13]. Although a limited range 
of wavevectors about qm is still extremely important, we cannot use the simplification 
adopted in the present case. The derivative of c(q)  clearly vanishes as q + qm and a more 
appropriate treatment of the wavevector integral must be made. Finally, the self- 
consistent nature of our equations (implemented with a better treatment of F and F,) 
suggests the possibility of investigating more closely the approach of the system towards 
a ‘glassy’ phase. 
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Appendix 

The need to split the time integral in (174  and (176) into two regions, by the introduction 
of the time to = 2n/Qo, may be avoided if a realistic expression for the mean square 
displacement could be constructed and used in the Gaussian model for F,(q,, t) .  We 
suggest such an expression in this appendix, and compare the subsequent results for the 
diffusion coefficients with those in table 1. It is based on an assumed exponential time- 
dependence for the memory function K(t )  associated with the velocity autocorrelation 
function q(t) [ l ] .  The latter is easily obtained and used to derive an analytic expression 
for &*(t) by means of (1). The memory function contains two parameters, C and cy, such 
that K ( t )  = Cexp(-at). In [l], C = Qi to guarantee the short-time behaviour of q(t) ,  
and the inverse relaxation time cy is chosen so that the integrated value of q(t) correctly 
reproduces some predetermined value for D. The intercept value of the mean square 
displacement is clearly not guaranteed by this procedure, and to achieve this we prefer 
to have the flexibility in the selection of C. This different philosophy is also consistent 
with the importance of the intermediate- and long-time behaviour of the memory 
function, referred to in section 3. 

Within this framework, the mean square displacement is eventually obtained as 

6 r 2 ( t )  = ( 6 k ~  T/m){at/C+ (c - (Y2)/c2 + eXp( -cUt/2) 

x [ ( cy/2d2)( a2 - 3C) sin E t  - ( C  - a2) /C2  cos 4) (A1 1 
where E = (C - cy2/4)”*. At sufficiently long times, 8r2( t )  .--, 6Dt + I ,  and to reproduce 
this asymptotic form we select 

(Y = mCD/kB  T 

c = [m1/6kB T + ( m D / k B  T ) 2 ] - ’ .  

I = ( 6 k ~  T/m)(C - (u2)/c2. (A2) 

(A31 

Thus 

Hence, in the present context, the more obvious choice of a value for Cis  sacrificed in 
favour of a correct asymptote. Unfortunately, even with this modification, the predicted 
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mean square displacement has some features which are not apparent in the cs data. 
When used to predict Fs(qm, t)  via (16), we obtain a result which tends to oscillate 
about the monotonic decay displayed by the computer data, before achieving the same 
asymptotic form. 

Nevertheless, by means of (A2) and (A3), F, (q,,,, t )  is completely specified by 
selecting D and I. This result is used in (13) for KMc( z) and the values for D and I selected 
in a systematic fashion until (17a) and (176) are simultaneously satisfied. In the units 
employed in table 1, the results are D = 2.61,1.68 and 1.68; 1 = 0.045,0.057 and 0.042 
for Rb 318, Rb 270 and Ar, respectively. 

Nobeaddedin proof For the stress autocorrelation function, the more accurate analysis mentioned in the 
concluding remarks has now been completed by one of the authors [14]. 
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